
system of equations is 3 h 40 min while the time of calculation of the temperature at one in- 
ternal point is 45 sec. 

The method developed Was tested by comparing the results of the calculation with ex- 
perimental data obtained by blowing through blades with combined cooling (convective + film 
cooling) at the hot wall. A description of the experimental subject is given in [7]. 

The measured and calculated temperatures were compared for the following operating pa- 
rameters: T~ = 905.7~ P~ = 1.37,105 N/m2; T~.in = 373~ Ga = G/Gg = 3%. 

The results of temperature measurements at the surface of the test blade are shown by 
points in Fig. 3. Curve 1 is a calculation by the two-dimensional method of [2] with the 
perforations combined in one cross section; 2) by the same method in a cross section where 
perforations are absent; 3) calculation of the three-dimensional temperature field in a char- 
acteristic element of the blade with allowance for the spatial distribution of the perfora- 
tions. 

It is seen from the graphs that in the middle part of the profile, where the character 
of the temperature field is close to two-dimensional, the results of the calculations by the 
two-dlmensional and three-dimensional theories differ little. In those places where the tem- 
perature field has a clearly expressed three-dimensional character (at the edges due to the 
presence of perforations) the calculations by the two-dimensional theory can lead to con- 
siderable errors (up to 20% at the inlet edge in the example under consideration). 
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HEAT TRANSFER OF A VERTICAL CYLINDER BY FREE CONVECTION 

AND RADIATION 

Yu. Ao Sokovishin and M. V. Shapiro UDC 536.244 

The effect of radiation on free convective heat liberation from the surface of a 
vertical cylinder located in a transparent medium is studied. It is shown that the 
radiative component of thermal flux equalizes the surface temperature. 

Calculation of the thermal regimes of radio electronic devices requires study of heat 
transfer from high temperature elements to the surrounding medium. In calculating heat lib- 
eration from the surfaces of bodies of semiconductor devices~ thermoresistors, microconduc- 
tors, etc., it is necessary to consider the effect of not only transverse curvature on heat 
transfer, but also the interaction of various forms of heat transfer. Of special interest 
in electronics is heat transfer to an immobile medium by free convection and radiation. 
Existing studies of this problem have considered the case of a plane surface and have mainly 
been performed by approximate methods [1-4]. 

We will consider free motion of a viscous incompressible gas with constant physicalprop- 
erties in a boundary layer near a vertical cylinder. The gas is considered optically trans~ 
parent and we neglect the processes of radiation emission, absorption, and scattering. The 
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Fig. I. Dimensionless velocity (a) and temperature (b) 
profiles in boundary layer: i) ~ = 0 (plate, qw = const); 

= 0.2; 2) S = O, B = i (plate); 3) S = 5, B = i; 4) S = 
i0, B = 0; 5) S = 0, B = i (plate); 6) S = 5, B = i; 7) 
S = i0, B = 0. 

gravitational force is defined in the Boussinesq approximation, and viscous dissipation is 
absent. In this case the equations for momentum transfer, energy, and flow continuity are 

written in the form 

Ou au 
I t -  V - -  

ax Or 
r + el3 ( T -  T~), (l) 

r Or - Or 

017.__ a a { raT  ~ (2) 
Or r Or \ Or ) ' 

O (ru) + 0 (rv) = (3) O. 
ax O r  

aT 
u -}-v 

Ox 

We assume that the cylinder surface emits into the surrounding medium a constant ther- 
mal flux qw, which is carried off as convective-conductive and radiative components. The 
latter are defined by local surface temperature and the surface radiation properties and are 
not independent. We consider the cylinder surface to be a gray diffusion radiator with emis- 
sivity r Then for the radiant component of thermal flux on the wall we may use the Stefan-- 
Boltzmann law and write boundary conditions in the form 

u = v - - O ,  q ~ = - - ~ (  a--~-r ) w - ~ e ( T ~ - - T ~ )  ~r r - R ,  

(4) 
u=O, T = T| ~r r..-~ oo. 

Commencing from continuity equation (3), we introduce the flow function, and transform in 

Eqs. (1)-(4) to the variables 

r Z - - R  z _.,~_i/sffeT3 
~+(Gr~/5)l/~ 2xR ' ~ -  (G~/w | x / L  

(5) 

q~x (Gr~/5) z/5 ~ = 5 v R ( a r ~ / 5 ) l / s f ( ~ ,  ~), T - - T .  =0(~, ~ ) ~ - -  , 

where Gr~ = gBqwXa/(X~ ), which are a generalization of the planar plate variables of [i] to 
the axisymmetric case, or to variables for a vertical cylinder in the presence of radiation. 

In the variables of Eq. (5), the problem (1)-(4) takes on the form 

(6)  

(7)  

&l a &l  ~ k. all J aq ~ 

( Of a2f a2f of ) 

a2o ao af s~ ao 
_ _ / I  (I -}- S~I~) &l  a- ~- 4 f - -  0 H- -- 

Pr &l &l Pr an 

( of ao of ao .) 
= ~ a~ a~ a~ an ' 
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Fig. 2. Dimensionlessshear stress 
on wall: i) S = i, B = I0; 2) S = 
5, B = I; 3) S = I0, B = i; 4) S = 0, 
B = I (plate). 
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The parameter S defines the relative effect of radiation curvature on heat exchange. It 
may be regarded as the ratio of two characteristic lengths: the radiative length 2%/(o~T~) 
and the cylinder radius R. The ratio between the total thermal flux and the radiant com- 
ponent is determined by the complex B. The dimensionless longitudinal coordinate ~ estab- 
lishes the relationship between radiant and convective components of the thermal flux. 

We will note the characteristic peculiarities of Eqs. (6)-(8). At ~ = 0 they transform 
to the self-similar problem of free convection around a lamina with constant thermal flux 
[5]. At S = 0, Eqs. (6)-(8) lose their "cylindrical nature" and transform to the problem 
of interaction of radiation and free convection on a planar plate. 

System (6)-(7) with boundary conditions (8) was calculated numerically by a finite- 
difference method. An implicit six-point finite-difference approach was used [6]. Deriva- 
tives with respect to ~ and ~ were approximated in the half-laYer to second order accuracy. 
Nonlinear terms were linearized by the simple iteration method [7]. Calculations 
were performed for air, Pr = 0.7, and the following parameter values: S = 0, I, 5, i0; B = 
0, i, I0. 

Figure I presents profiles of dimensionless velocity u = ~f/9~ = u/[5(~/x)(Grx*/5) 2/5] 
and temperature 0 = (T -- T~)/[ (qwx/%) (Grx*/5) -I/S] in the boundary layer for various values 
of S and ~. With increase in ~ the maximum in dimensionless velocity shifts in the direc- 
tion of larger n and decreases in value. The decrease in the velocity maximum occurs more 
rapidly than in the case of a planar plate (S = 0). The dimensionless temperature of the 
wall decreases insignificantly as compared to the planar plate case. However the reduction 
in temperature with transverse coordinate is more marked. 

The dimensionless shear stress T w = (~2f/3~2)o = Tw/[(5~v/x2)(Grx*/5) 2/5] (Fig. 2) de- 
creases with ~ more rapidly, the larger the radiation parameter B. Increase in the curva- 
ture parameter S leads to decrease in friction in comparison to the planar case. 

Figure 3a, b presents curves of the change in local heat liberation from the cylinder 
surface in the forms 

Nu~ _. 1 [ 0 0 ~  
Gr~ )'~'~ 5 l!~ Ow ~ 0 ~ - ~  ]o' (9)  
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Fig. 3. Local heat liberation at wall versus longitudinal 
coordinates for: a) cylinder with qw = const; b) cylinder 
with t w = const: i) S = i0, B = i; 2) 5 and i; 3) I and I; 
4) 1 and i0; 5) 0 and i; 6) 0 and i0; 7) t w = const (plate). 
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The opposing effects of radiation and transverse curvature on heat liberation can be 

seen. Radiation reduces, and curvature increases, heat liberation. At low ~ and B = i0 the 
effect of radiation appears more strongly due to the sharp drop in surface temperature. Such 
a decrease in heat liberation is noticeable only at S -< i. With further growth in ~ the 
influence Of curvature becomes dominant, and heat liberation, having reached a minimum value, 
begins to increase. The position of the minimum shifts down the flow with increase in the 
radiation parameter B. At S = B = i interaction of curvature and radiation causes the heat 
liberation in the form Nux/Gr*'/s~ to maintain a constant value over a wide range of variation 
of ~. For the case S = 0 (planar surface) heat liberation decreases with ~. 

In [i] it was shown that at large values of ~ the vertical planar radiating surface be- 
comes isothermal. For a plate the local heat liberation in the form Nus/Gr~ 14 changes from 
0.403 (~ = 0, qw = const) to 0.353 (~ -~ =, T = const). We will demonstrate that this is also 
valid for a vertical cylindrical surface. In Eqs. (I)-(4) we transform to variables used for 
an isothermal cylinder: 

~t= 4 " R 4 2xR , (I0) 

xp 4v(Gr~ '"  \ l  4 T T~ 
= - - 1  ~o(~,.~, n~), (7(~t,~, nt) - - ,  4 j AT. 

where AT= is a constant value subject to definition. 

Boundary condition (4) for heat liberation from the surface is written in the form 

T| $,| ~ o= \ T.  G ~ §  - - 1 - - B .  (11) 

For ~t,~ -~ ~ the left side of the equation tends to zero and G w § i. From this condition we 
define AT= : 

T~ -F1 l - - B = 0  ~ 5 , ~ o o ;  AT| B + I  --1). (12) 

For small B, expanding the right side of Eq. (12) in a series, we obtain AT~ = qw/4~eT~ 
[I]. The left side of Eq. (ii) decreases with ~t,~ more rapidly, the smaller the curvature 
parameter S. Consequently, the function T w -- T= reaches its asymptotic value more rapidly 
at smaller S (Fig. 4). Curve 5 of Fig. 4 corresponds to heat liberation of an isothermal 
cylinder and is the asymptotic function of curves 1-4 for heat transfer with consideration 
of radiation. Approach to the asymptote occurs at smaller ~t with increase in B and decrease 
in S. 
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Fig. 4. Asymptotic values of local heat 
liberation at wall: I) S = i0, B = I; 2) 
5 and i; 3) 1 and i; 4) 1 and I0; 5) B § 
(Tw = const). 

The variables St and $ are related by the formula 

~t ~ ~ S  1,4 (13) 

while ~t § $~ ~ as ~ § ~. The product ~S = 2x(Grx/5)-*/5/R = ~q is the longitudinal variable ~ 
problem of free convection on a cylindrical surface with constant thermal flux [5]. With use 
of the variables ~q, q in the boundary condition (8) for thermal flux on the wall there ap- 
pears the new parameter F = B/S = qwR/(2%T=), not containing radiation characteristics: 

0 I ~ 

The limiting transition B -> ~ (e = 0, nonradiating surface) reduces boundary condition (14) 
to the form--(~8/3D)o = I. Then in the variables ~, ~a the problem describes free convective 
heat transfer of a vertical cylinder with qw = const [5]. 

NOTATION 

x and r, longitudinal and radial coordinates; u, v, velocity components along x and r 
axes; T, shear stress; T, temperature; q, thermal flux; g, acceleration0f gravity; 8, ~, a,v, k, 
coefficients of volume expansion, dynamic viscosity, thermal diffusivity, kinematic viscosity, 
and thermal conductivity; a, Stefan -- Boltzmann constant; e, surface emissivity; R, cylinder ra- 
dius; ~, flow function; AT~ = T~(~-$~-- i), temperature drop in boundary layer as $ + ~; 
f, 8, g, G, dimensionless flow function and temperature; q = [(r 2 -- R2)/2Rx](Gr~/5)*/5, di" 
mensionless transverse coordinate; ~ = aerSx(Gr~/D) I/'/k, ~ = 2x/R(Gr~/5) -I/', St = 2x/R- 

--I/4 --I 4 �9 . ~ �9 (Grx/4) ,- ~t ~ = 2x/R(Grv ~/4) / , dimenslonless longltudlna! variables; Gr~ = gS(T.. -- 
T~)x /~ , Gr x ~ = gSAT~x /v , Grashof crlterla; Gr x = gBqwx /(k~ ), modlfled Grashof cri- 

" �9 ~ 4 terlon; Nu x = ax/X, Nusse!t number; Pr = v/a, Prandti number; B = (qw/~eT~), P = qwR/(2%T.), 
S = 2%/(~r dimensionless parameters. Indices: x, local value; w, wall; 0, body sur- 
face; ~, asymptotic value; t, specified temperature; q, specified thermal flux. 
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